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Star  nonfullerene  acceptors  like  ITIC[1],  IDIC[2],  O-IDTBR[3],
IT-4F[4],  COi8DFIC[5],  Y6[6] etc.  continuously  emerge  and  keep
pushing the power conversion efficiency (PCE) of organic sol-
ar  cells  forward.  These  small  molecules  generally  show  nar-
row bandgaps, excellent visible to NIR light-harvesting capabil-
ity, good electron mobility, suitable energy levels and miscibil-
ity  with  the  donor  materials.  PCEs  up  to  18.56%  have  been
achieved  for  the  state-of-the-art  nonfullerene  organic  solar
cells[7].  On  the  other  hand,  donor  materials  matching  non-
fullerene acceptors also received considerable interests[8]. Ow-
ing  to  complementary  light  absorption,  high  hole-mobility
and deep HOMO levels,  wide-bandgap (WBG) conjugated co-
polymers  are  ideal  donor  partners  for  the  low-bandgap  non-
fullerene  acceptors.  Hou et  al.  developed  a  WBG  copolymer
donor  PM6  based  on  a  benzo[1,2-c:4,5-c']dithiophene-4,8-di-
one  (BDD)  unit[9].  PM6  has  been  widely  applied  in  non-
fullerene  solar  cells,  delivering  high  PCEs  up  to  17.8%[10].  Li
et  al.  reported  a  simple-structured  WBG  copolymer  PTQ10
based  on  a  quinoxaline  unit[11].  Solar  cells  based  on  PTQ10
and  Y6  gave  a  PCE  of  16.53%[12].  Huang et  al.  developed  a
WBG copolymer P2F-EHp by using an imide-functionalized ben-
zotrizole  (TzBI)  unit[13].  P2F-EHp:Y6  solar  cells  gave  a  16.02%
PCE. Guo et al. synthesized a random copolymer S1 with a flu-
orine and ester group functionalized thiophene (FE-T) unit[14].
Owing  to  the  strong  electron-withdrawing  property  of  FE-T,
S1  has  a  deep  HOMO  level  and  delivered  a  high  open-circuit
voltage  (Voc)  of  0.88  V  and  a  PCE  of  16.42%.  Ding et  al.  de-
veloped a 2.16 eV ultra-WBG copolymer W1 by using a fluorin-
ated  1,2-dialkoxybenzene  (FAB)  unit[15].  The  FAB  unit  offers
unique  and  double-side  conformation  locking  in
the copolymer  backbone,  and renders  W1 enhanced packing
and  good  hole-transporting  capability[16].  W1:Y6  solar  cells
gave  a  PCE  of  16.23%.  Ding et  al.  also  developed  several
high-performance  WBG  copolymer  donors  based  on  fused-
ring acceptor units. The WBG copolymer L1 based on a fused-
ring  lactone  unit  5H-dithieno[3,2-b:2',3'-d]pyran-5-one  (DTP)
delivered  a  14.36%  PCE[17].  A  fused-ring  thiolactone  copoly-
mer  D16  based  on  the  5H-dithieno[3,2-b:2',3'-d]thiopyran-5-

one  (DTTP)  unit  gave  a  higher  PCE  of  16.72%[18].  By  using  a
dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole
(DTBT) unit, which has a larger molecular plane than DTP and
DTTP,  Ding et  al.  developed a  more efficient  WBG copolymer
donor  D18[19].  D18:Y6  solar  cells  gave  a  PCE  of  18.22%  (certi-
fied 17.6%).  This  is  the first  time for  the PCE of  OSCs surpass-
ing  18%.  Thick-film  D18:Y6:PC61BM  ternary  cells  delivered
16% PCEs with an active layer thickness over 300 nm[20].  Ding
et  al.  further  reported  a  chlorinated  analogue  of  D18,  the
D18-Cl[21].  Blending  D18-Cl  with  a  nonfullerene  acceptor  N3
yielded a  PCE of  18.13% (certified 17.6%).  Very  recently,  Ding
et  al.  pushed  the  PCE  to  18.56%  (certified  17.9%)  by  blend-
ing  D18  with  N3,  setting  a  new  PCE  record[7].  These  works
demonstrated  the  advantages  of  fused-ring  acceptor  units  in
constructing WBG copolymer donors. The strong electron-with-
drawing capability and extended molecular planes of these ac-
ceptor  units  gift  copolymers  deep  HOMO  levels,  enhanced
packing  and  high  hole  mobility,  thus  leading  to  improved
Voc,  short-circuit  current  density  (Jsc)  and fill  factor  (FF)  in  sol-
ar  cells.  In  this  work,  we  report  copolymers  P1  and  P2  based
on  a  dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole
(DTBO) unit  (Fig.  1(a)).  Compared with DTBT,  DTBO has fewer
synthetic  steps  and  is  more  cost-effective[22].  DFT  calcula-
tions  indicate  that  DTBO  renders  the  copolymer  a  deeper
HOMO level,  thus  yielding higher Voc in  solar  cells.  Solar  cells
with  P1  and  P2  as  the  donors  and  Y6  as  the  acceptor  af-
forded high Voc up to 0.91 V and decent PCEs up to 15.64%.

We  built  the  polymer  models  for  D18,  P1  and  P2
(Fig.  1(b)).  Each  model  has  two  repeating  units,  and  the  alkyl
chains were replaced by methyl groups for saving the calcula-
tion  time.  All  structures  were  optimized  at  the  B3LYP/6-
31G(d)  level.  The  DFT-predicted  frontier  molecular  orbitals
and  energy  levels  for  D18,  P1  and  P2  are  shown  in Fig.  1(b).
From  D18  to  P1,  DTBT  being  replaced  by  DTBO,  simultan-
eous  decrease  in  HOMO  and  LUMO  energy  levels  was  ob-
served.  The  HOMO  and  LUMO  levels  for  P1  are  –5.05  and
–2.69  eV,  respectively,  which  are  ~0.1  eV  lower  than  that  of
D18.  A higher Voc was expected for  P1-based solar  cells  since
Voc is  proportional  to  the  energy  difference  between  donor
HOMO  and  acceptor  LUMO[23].  Compared  with  P1,  P2  shows
higher HOMO and LUMO levels of –4.94 and –2.61 eV, respect-
ively,  due  to  the  removal  of  electron-withdrawing  fluorine
atoms.  For  P1  and  P2,  the  variation  trends  in  DFT-predicted
HOMO  and  LUMO  levels  are  consistent  with  those  from  cyc-
lic voltammetry (CV) measurements (vide infra).
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The  synthetic  routes  for  P1  and  P2  are  shown  in
Scheme  S1.  The  5,8-dibromodithieno[3',2':3,4;2'',3'':5,6]benzo
[1,2-c][1,2,5]oxadiazole  (DTBO-Br)  coupled  with  tributyl(4-(2-
butyloctyl)thiophen-2-yl)stannane  gave  compound  1  in  62%
yield.  Bromination of  compound 1 with NBS gave compound
2  in  80%  yield.  Copolymerization  of  compound  2  with  (4,8-
bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-
b']dithiophene-2,6-diyl)bis(trimethylstannane)  (FBDT-Sn)  and
(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dith-
iophene-2,6-diyl)bis(trimethylstannane) (BDT-Sn) gave P1 and
P2  in  90%  and  58%  yield,  respectively.  The  number-average
molecular weights (Mn) for P1 and P2 are 38.0 and 47.0 kDa, re-
spectively,  with  the  polydispersity  indexes  (PDI)  of  2.08  and
1.67,  respectively.  P1  and  P2  are  soluble  in  chloroform  and
chlorobenzene.  The  absorption  spectra  for  P1,  P2  and  Y6
films are  shown in  Fig.  S7.  Both P1 and P2 show two absorp-
tion  peaks,  with  a  high-energy  peak  at  545  and  549  nm,  re-
spectively, and a low-energy peak at 582 and 590 nm, respect-
ively. The absorption band for P1 and P2 lies in 400–620 nm re-
gion,  which  is  complementary  with  that  of  Y6  (560–920  nm).

The  absorption  onsets  for  P1  and  P2  films  are  626  and
633  nm,  respectively,  corresponding  to  optical  bandgaps
(Eg

opt)  of  1.98  and  1.96  eV,  respectively.  Energy  levels  for  P1
and  P2  were  estimated  from  CV  measurements  (Fig.  S8).  The
HOMO  and  LUMO  levels  for  P1  and  P2  were  calculated  from
the  onset  potentials  of  oxidation  (Eon

ox)  and  reduction
(Eon

red),  respectively,  i.e.,  HOMO  =  –(Eon
ox +  4.8)  and  LUMO  =

–(Eon
red + 4.8). The energy level diagram is presented in Fig. S9.

P1 and P2 show deep HOMO levels of –5.61 and –5.45 eV, re-
spectively,  which  are  favorable  for  producing  high Voc in  sol-
ar  cells.  The  HOMO  level  of  P1  is  0.1  eV  deeper  than  that  of
D18 (–5.51 eV)[19], consisting with DFT calculation.

Solar  cells  with  a  structure  of  ITO/PEDOT:PSS/polymer:
Y6/PDIN/Ag  were  made  to  evaluate  the  performance  of  P1
and  P2.  The  D/A  ratio,  active  layer  thickness  and  additive  (1-
chloronaphthalene)  content  were  optimized  (Tables  S1–S6).
J–V curves  and  external  quantum  efficiency  (EQE)  spectra  for
the  best  cells  are  shown  in Figs.  1(c) and 1(d),  respectively.
The  best  P1:Y6  cells  gave  a  PCE  of  10.92%,  with  a Voc of
0.91  V,  a Jsc of  18.22  mA  cm–2 and  a  FF  of  65.7%.  These  cells
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Fig. 1. (Color online) (a) DTBT and DTBO building blocks, and DTBO-based copolymers P1 and P2. (b) Molecular models and corresponding fronti-
er molecular orbitals and energy levels for D18, P1 and P2. (c) J–V curves for P1:Y6 and P2:Y6 solar cells. (d) EQE spectra for P1:Y6 and P2:Y6 solar
cells.
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have  a  D/A  ratio  of  1  :  1.6  (w/w),  an  active  layer  thickness  of
110  nm  and  no  additive.  The  best  P2:Y6  cells  gave  a  PCE  of
15.64%,  with  a Voc of  0.83  V,  a Jsc of  26.72  mA  cm–2 and  a  FF
of 70.6%. These cells  have a D/A ratio of 1 :  1.6 (w/w),  an act-
ive  layer  thickness  of  120  nm  and  no  additive.  The Voc of
P1:Y6 cells is 0.05 V higher than that of D18:Y6 cells[19], suggest-
ing  the  advantage  of  DTBO  unit  in  enhancing Voc.  The  P2:Y6
cells  present  much  better  performance  than  P1:Y6  cells  due
to  the  higher Jsc and  FF.  P2  cells  afforded  higher  EQE  than
P1  cells  in  the  whole  spectrum,  with  the  maximum  EQE  of
86%  at  560  nm  (Fig.  1(d)).  The  integrated  current  densities
for P1 and P2 cells are 17.56 and 25.75 mA cm–2,  respectively,
consistent  with Jsc from J–V measurements.  The  exciton  dis-
sociation  probabilities  (Pdiss)  for  P1  and  P2  cells  are  96.3%
and  98.4%,  respectively,  suggesting  more  efficient  carrier
generation  in  the  latter  (Fig.  S10)[24].  Higher Jsc and  FF  for  P2
cells  suggest  a  superior  charge-transporting  capability  of  P2.
Hole  mobilities  (μh)  were  measured  for  pure  P1  and  P2  films
by  using  space-charge  limited  current  (SCLC)  method  (Fig.
S11)[25−27].  The μh for  P1  and  P2  are  5.13  ×  10–4 and  8.82  ×
10–4 cm2 V–1 s–1, respectively, confirming the better hole-trans-
porting  capability  of  P2.  The μh and  the  electron  mobilities
(μe)  were  also  measured  for  the  blend  films  (Figs.  S12  and
S13).  Compared  with  P1:Y6  film,  P2:Y6  film  gave  a  higher μh

of  3.92  ×  10–4 cm2 V–1 s–1,  a  higher μe of  2.97  ×  10–4 cm2 V–1

s–1,  and  a  smaller μh/μe of  1.32  (Table  S7).  We  investigated
bimolecular recombination by plotting Jsc against light inten-
sity  (Plight)  (Fig.  S14)[28−31].  P2:Y6  cells  showed  a α value  of
0.985, which is closer to 1 than that of P1:Y6 cells (0.973), sug-
gesting  less  bimolecular  recombination  in  P2:Y6  cells.  The
faster  and  more  balanced  charge  transport  as  well  as  less
charge  recombination  in  P2:Y6  cells  account  for  the  higher
FF. The morphology for P1:Y6 and P2:Y6 blend films was stud-
ied  by  using  atomic  force  microscope  (AFM)  (Fig.  S15).  Both
films present nanofiber structures.  Compared with P1:Y6 film,
P2:Y6  film  has  a  smoother  surface.  The  root-mean-square
roughnesses for P1:Y6 and P2:Y6 films are 1.20 and 1.02 nm, re-
spectively.

In  summary,  a  fused-ring  acceptor  unit  DTBO  was  de-
veloped.  Compared  with  previously  reported  DTBT  unit,
DTBO  can  lower  the  HOMO  level  of  polymer  donors,  thus  in-
creasing  the Voc of  solar  cells.  DTBO-based  copolymers  de-
livered  a  maximum Voc of  0.91  V  and  a  maximum  PCE  of
15.64%.
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